On the Number of Real Roots of Polynomials
نویسندگان
چکیده
Our main theorem, proved in § 2 establishes some of the properties of F(x, y) = 0 when we drop all restrictions on / and require only that all the roots of h be real (of arbitrary sign). In the last section, we apply this theorem to obtain an extension of Theorem 1.1 which states that, for h restricted as in Pόlya's theorem, there are at least as many intersection points as the number of real roots of /. As corollaries, we then obtain the full strength of the Hermite-Poulain theorem and extensions of the theorems of Pόlya and Schur to arbitrary polynomials /. Pόlya states that his theorem is one of the most general known theorems on the reality of roots of polynomials. We believe this statement is still true
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملOn the domination polynomials of non P4-free graphs
A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...
متن کاملOn the Roots of Hosoya Polynomial of a Graph
Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...
متن کاملOn Bounds for Real Roots of Polynomials
The computation of the real roots of univariate polynomials with real coefficients is done using several algorithmic devices. Many of them are based on the isolation of the real roots, i.e. the computation of a finite number of intervals with the property that each of them contains exactly one root. For that one of the steps is that of computing bounds for the roots. This can be realized using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004